B. Tech

BSCM 2101

First Semester Examination - 2007

MATHEMATICS - 1

Full Marks-70

Time: 3 Hours

IWL

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate full marks for the questions.

1. Answer the following questions precisely:

2×10

(a) Write the parallel asymptote of the curve

$$y = \frac{x^2}{x^2 + 1},$$

- (b) Write the general solution of the differential equation $y' + y = e^{-x}$.
 - (c) Write the particular solution of the differential equation y"+y' = 2 in the most general method by undetermined coefficient method.
 - (d) If the equation y'' + P(x)y' + Q(x) = 0 has series solution about the ordinary point x = a, then write the conditions that P(x) and Q(x) have to satisfy.
 - (e) If the equation y'' + P(x)y' + Q(x) = 0 has series solution about the regular singular point x = a, then write the conditions that P(x) and Q(x) have to satisfy.
 - (f) Write the solution of the differential equation y' + y = 0 in series.

2

Contd.

- (g) What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}.$
- (h) What is the value of P_{2n+1}(0), the Legendree polynomial of degree 2n+1.
- (i) Write the polynomial expression of $P_2(x)$, the Legendree polynomial of degree 2.
- (j) Find the Laplace transform $L(\sin(wt))$ using the result $L(e^{iwt}) = \frac{1}{s-iw}$.

2/ Solve the following problems:

- (a) Find the radius curvature of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at the point (a, 0).}$
- (b) Find the asymptote to the curve $x^3 y^3 = 3ax^2$.

- 3. Answer the following questions as per the instruction:
 - (a) Solve the Bernoulli's equation $y' 2xy = 2xy^2$
 - (b) A tank of 100 gallons capacity is initially full of water. Pure water is allowed to run into the tank at the rate of 1 gallon per minute, and at the same time brine containing 0.25 pounds of salt per gallon flows into the tank at the rate of 1 gallon per minute. If the mixture is allowed to flow out at the rate of 2 gallons per minute after perfect mixing, then find the amount of salt in the tank after t minutes.

5

- 4. Solve the following initial value problems :
 - (a) $y'' + 4y = 4\cos(2x)$ with y(0) = 0 and y'(0) = 2 using method of undetermined coefficient.
 - (b) $y'' 5y' + 6y = e^{4x}$ with $y(0) = \frac{1}{2}$ and y'(0) = 2 using method of variation of parameter.

5

5. Answer the following questions according to the instruction :

- (a) Solve the equation (x 1)y'' xy' + y = 0by reducing the order using $y = e^x$ as one of the solution.
- (b) Solve Cauchy-Euler equation
 x²y" 5xy' + 8y = 0
 by reducing into constant coefficient differential equation.

- Answer according to the instruction :
 - Find the series solution of the differential equation y'' - 9y = 0 with y(0) = 1 and y'(0) = 0.
 - (b) Prove the identity

$$J_{-\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \cos(x).$$

- Answer according to the instruction:
 - (a) Find the Laplace transform of the function

$$f(t) = \begin{cases} \left(\frac{\alpha}{a}\right)t, & 0 < t < a \\ \left(\frac{\alpha}{a}\right)(2a-t), & a < t < 2a \\ 0, & \text{otherwise} \end{cases}$$

where α and a are constants.

(b) Find the inverse Laplace transform of

$$F(s) = \frac{9}{s^2(s^2 - 9)}$$
 5

- Answer the following questions according to the instruction:
 - (a) Solve the initial value problem y" + y = 2 with y(0) = 0 and y'(0) = 2 using Laplace 5 transform.
 - (b) If $f * g = \int_{0}^{1} f(t-\gamma)g(\gamma)d\gamma$, then show that

BSCM 2101